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Abstract. We propose a hybrid system for extracting chemical-disease
relationships from Medline abstracts. At the core of our approach is a
general, rule-based system that extracts causal relations from text, using
a combination of trigger lists and syntactic dependencies. We augmented
this system with supervised learning. We trained two binary classifiers:
one extracts intra-sentential relationships between chemical-disease men-
tion pairs, and the other attempts to extract relationships across sen-
tences. Our hybrid system yielded an F1 score of 36.49. Our results on
the development corpus reveal that chemical and disease named entity
recognition are still major problems, and that improvements made in
this area are likely to have a significant impact in chemical-disease rela-
tionship extraction.
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1 Introduction

With the exponential growth in biomedical literature and user-generated health
content, it is critical to develop automated systems that can assist pharmacovig-
ilance and curation tasks. Task 3 of the BioCreative 5 challenge [12] aims to
stimulate research in this area and consists of two sub-tasks: disease named en-
tity recognition (DNER) and chemical-induced disease relation extraction (CID),
the former task an intermediate step for the latter. A corpus of 1,000 Medline
abstracts annotated with chemical and disease mentions and the relationships
between them is provided for training and validation [7]. The participating sys-
tems are evaluated on 500 abstracts, through web services, in order to evaluate
not only the accuracy of the systems but also their response time and scalability.

Of the two sub-tasks, our interest mainly lies in the relationship extraction
(CID) task. For this task, we propose a hybrid approach. We adapted a general,
rule-based relation extraction system that deals with causal relations to the
CID task and expanded it with supervised machine learning models to recover
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more challenging sentence-bound relationships as well as relationships that cross
sentence boundaries. Our results show that the hybrid approach is more effective
than both rule-based and machine learning approaches, even though there is
much room for improvement. Our experiments with the development data also
showed that accurate identification of chemical-disease mentions in text is critical
for relation extraction; using gold standard named entity annotations yielded an
approximately 62% increase in F1 score.

2 Methods

We used a pipeline architecture; named entity recognition/ normalization was
followed by rule-based relation extraction and, if necessary, sentence-bound and
discourse-level extraction using supervised models. We used DNorm [5] for dis-
ease and tmChem [6] for chemical name recognition/normalization. DNorm was
retrained on the training corpus while tmChem was used with pre-built models.

2.1 Rule-based relation extraction

Similarly to the CID task, the biological event extraction task [4] considers causal
relationships, such as positive regulation. To take advantage of the similar-
ity, we adapted a linguistically grounded, rule-based system that was originally
developed for the BioNLP shared task on event extraction [3] and enhanced since.
The system adopts a two-phase approach. In the first phase (Composition), a
general, underspecified semantic interpretation is composed from syntactic de-
pendency relations in a bottom-up manner. This phase presupposes named en-
tities, and relies on a trigger dictionary and argument identification rules to
extract predicate-argument structures (PAS) consisting of the trigger and its
logical subject, object, and adjunct arguments. The second phase is meant to
be task-specific and, for the CID task, is concerned with tailoring the resulting
semantic interpretation to the CID task requirements.

Disease and chemical mentions were recognized and normalized using DNorm
and tmChem, respectively. We used a existing dictionary of causal indicators,
previously compiled from several corpora, as relation triggers. For the CID task,
the trigger list consists of 201 triggers and mainly includes triggers for reg-
ulation and positive regulation events from the the BioNLP shared task
corpora (e.g., induce, effect, role) as well as discourse connectives that describe
causal (e.g. as a result) or temporal relations (e.g., before, after) compiled from
the Penn Discourse TreeBank [10]. For each trigger, the dictionary encodes part-
of-speech, lemma, and the dependency patterns that can be used by argument
identification rules, described below. Dependency relations (collapsed format)
were extracted using the Stanford CoreNLP toolkit [8].

After recognizing the named entity and trigger mentions in text, the Compo-
sition phase proceeds with transforming the syntactic dependency graph for each
sentence into an intermediate semantic graph through a series of transformation
rules. These rules serve several purposes: a) integrating semantic information
into the dependency graph, b) making the semantic dependencies between tex-
tual units explicit, c) correcting potential errors in dependency relations, and
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d) handling syntactic phenomena, such as coordination (for more details about
these transformations, see [2]). Once a semantic graph of a sentence is formed,
a bottom-up traversal of the graph, guided by argument identification rules, is
performed to determine the logical arguments of the triggers (logical subject, log-
ical object, and adjuncts). The argument identification rules define a mapping
from a lexical category and a dependency pattern to a logical argument type.
Inclusion and exclusion constraints for these rules can also be defined. Two such
rules are given in Table 1.

Category Pattern Include Exclude Argument

NN prep on influence, impact, effect - Object

VB agent - - Subject
Table 1. Argument identification rules

The first rule indicates, for example, that the object argument of effect can
be found along the dependency path that begins with the outgoing prep on arc.
Composition phase yields a list of PASs. An example sentence and the PAS
extracted from it are given in Example (1).

(1) (a) A 2-year-old child with known neurologic impairment developed a dyskinesia
soon after starting phenobarbital therapy for seizures.

(b) Trigger=after(cause)
Subject=phenobarbital(chemical), Object=dyskinesia(disease)

For the CID task, in the second phase, we simply keep the PASs in which the
trigger is causal, logical subject argument corresponds to a chemical term and the
object to a disease, and prune the rest of the PASs (for instance, those where both
the subject and object are diseases). Adjunct arguments of the relevant PASs, if
any, are also pruned. Since the CID relations are document-level relationships,
we also prune duplicate instances of the same relationship.

2.2 Augmenting rule-based extraction with supervised learning
Causal relationships can be notoriously difficult to extract, since they can be
expressed implicitly, not only at the sentence level but also at the discourse
level and may require inference [9]. Therefore, we augmented the rule-based ex-
traction with two supervised models. The first of these models (ml sentence)
addresses sentence-bound relationships and the second addresses discourse-level
relationships (ml discourse). No explicit triggers are required for the relation-
ships extracted with these models. We formulate the implicit relation extraction
task as a binary classification task, where training examples consist of chemical-
disease mention pairs and we predict whether a relationship holds between them
or not. For ml sentence, training examples consisted only of mention pairs
that appear in the same sentence and, for ml discourse, of those that do not
appear in the same sentence in a given abstract. We used linear SVM [1] to train
the classifiers. Both classifiers use n-gram features as well as trigger-related and
discourse-level features, provided in Table 2 and illustrated on the phenobar-
bital:dyskinesia mention pair from the sentence in Example (1a). Feature ex-
traction presupposes the pre-processing performed for the rule-based extraction
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Feature Description Sentence Discourse

F1 Uncased tokens of the mention sentence(s) Y Y

F2 Uncased bigrams of the mention sentence(s) Y Y

F3 5 uncased tokens preceding the chemical mention Y Y

{starting, after, soon, dyskinesia, a}
F4 5 uncased bigrams preceding the chemical mention Y Y

{after starting,soon after,dyskinesia soon,a dyskinesia,developed a}
F5 5 uncased tokens following the chemical mention Y Y

{therapy,for,seizures}
F6 5 uncased bigrams following the chemical mention Y Y

{therapy for,for seizures}
F7 − F10 same as F3 − F6, for the disease mention Y Y

F11 Uncased causal triggers preceding the chemical mention
(after)

Y Y

F12 Uncased causal triggers following the chemical mention
(∅)

Y Y

F13−F14 same as F11 − F12, for the disease mention Y Y

F15 chemical in focus (true) Y Y

F16 disease in focus (true) Y Y

F17 number of textual units between mentions (3 ) Y N

F18 normalized section name of the mention (ABSTRACT ) Y N

F19 whether the other concept in the mention pair exists in
the sentence

N Y

F20 whether the other semantic type in the mention pair ex-
ists in the sentence

N Y

F21 distance between the sentences of the mentions N Y
Table 2. The features using by the linear SVM models

component (i.e., mention recognition and coordination detection). Features F15

and F16 check whether the mentions are in the focus of the article. For this, we
assume that if the concept associated with the mention occurs in the title of the
article, it is in focus. F18 takes the value of the normalized section name (e.g. OB-
JECTIVE, RESULTS ) if the abstract is structured [11] or TITLE/ABSTRACT
depending on the mention’s position, otherwise.

If a pair A-B is predicted to be related by a classifier and one or both of the
mentions in the pair (for instance, A) are coordinated with other terms of the
same type (C), we add new relationships to our predictions (in this case, C-B is
added). In one of our official runs (Run 1), the sentence-based classification is
only performed if the number of relationships extracted at the rule-based extrac-
tion step is fewer than two. Similarly, discourse-based classification is performed
only when the number of relationships extracted in previous steps is fewer than
two. In our other run (Run 2), we only used the machine learning-based compo-
nents. In this run, the discourse-based classification was performed only when
the sentence-based classifier generated fewer than two relationships.

3 Results and Discussion
The official results for our two runs on the test dataset are provided in Table 3.
Using rule-based extraction yields better performance at the expense of slightly
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longer response time. It also provides a 35% increase in F1 score from the co-
occurrence based baseline method, which also uses DNorm and tmChem.

Run Response Time Precision Recall F1

Run 1 4,538.4 42.47 31.99 36.49

Run 2 4,471.4 39.30 31.71 35.10

Baseline 16.43 76.45 27.05
Table 3. Official evaluation results

To assess the effect of different components of the system on performance, we
also evaluated our system on the development dataset (Table 4). The runs that
used gold standard mention/concept annotations are indicated with (A) and
those using DNorm and tmChem mention/concept annotations are indicated
with (B). Using DNorm and tmChem yielded a precision of 72.59, a recall of
69.74, and an F1 score of 71.14 for concept recognition on the development set.

Run Precision Recall F1

Run 1 (A) 54.64 59.76 57.09

Run 1 (B) 39.04 32.15 35.26

Rule-based (A) 60.94 37.08 46.11

Sentence-based (A) 54.13 54.34 54.23

No number restriction (A) 43.43 63.60 51.62
Table 4. Results on the development set

These results show that our relation extraction performance was influenced
significantly by chemical/disease concept recognition.The system performance in
F1 score is reduced from 57.09 to 35.26 (approx. 38%), when it takes as concepts
those extracted by DNorm and tmChem. The results also confirm the difficulty
of extracting causal relationships, even when the entities involved are known.
Trigger-centric rule-based approach achieves reasonable precision (60.94); how-
ever, it yields low recall (37.08), suggesting that most causal relations are ex-
pressed with more complex means than typical verb- or nominalization-anchored
constructions. Augmenting the rule-based extraction with entence-based classi-
fication (ml sentence) is helpful in addressing the low recall to some extent
(47% increase) at the expense of some precision loss (11%). One of the inter-
esting aspects of the CID task is the prevalence of discourse-level relationships;
we found that about 15% of all relationships were expressed only at this level.
The discourse-level classifier improved F1 score from 54.23 to 57.09 (approx. 5%
increase), without hurting precision or recall. Overall, SVM models improved
the F1 score by about 24% (46.11 to 57.09). Restricting when the models are
used had a significant effect on the results, since they tended to overgenerate
relationships. Without any restriction on the number of relationships generated
at the previous steps, the overall performance drops by about 10%, to 51.62,
even though the recall is highest at 63.6.

4 Conclusion
We presented a hybrid approach for chemical-disease relationship extraction
task. The rule-based extraction component yields reasonable precision with low
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recall. Augmenting this component with sentence-based and discourse-based re-
lationship classifiers improves overall results significantly. We used relatively sim-
ple features for classifiers; more sophisticated syntactic and semantic features did
not seem to provide much benefit. We also experimented with coreference reso-
lution and relationship pruning based on negation/speculation detection; how-
ever, we did not observe a positive effect due to these components.We believe
that focusing on better named entity recognition/normalization and discourse-
level understanding is likely to be fruitful for improving the state-of-the-art in
chemical-disease relationship extraction task.
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